

Department of Electronics and Communication Engineering

COMPUTER VISION AND IMAGE PROCESSING (CVIP) LABORATORY

FACULTY INCHARGE	Prof. Nidhi Goel	
TECHNICAL ASSISTANT	Ms. Neetu Meena	

Department of Electronics and Communication Engineering

COMPUTER VISION AND IMAGE PROCESSING (CVIP) LABORATORY

FACILITIES (SOFTWARE AND HARDWARE)

- 1. NVIDIA four port 40 GB A100 DGX workstation
- 2. HP Desktops (Count: 20)
 - 2.1 Processor: Intel(R) Core(TM) i7 CPU 3.40 GHz
 - 2.2 RAM: 4.00 GB and 8.00 GB
 - 2.3 System Type: 64 bit Operating System Windows 8
- 3. FPGA Boards (Count: 05)
- 4. MATLAB R2022a (Campus-Wide License)

DATA STRUCTURE LABORATORY

SEMESTER-III (B.TECH- ECE/ECE-AI) SUBJECT CODE: BCS-201

List

a. Traversal

Room No. E-106

c. Deletion

LIST OF EXPERIMENTS

1. Write a C program	m to implement array	data structure	with following
operations:			
a. Traversal	b. Insertion		c. Deletion
d. Sorting	e. Searching (line	ear search)	
2.Write a C program	to perform following op	perations on ma	atrices:
a. Addition b	. Subtraction c. Multi	iplication	d. Transpose
3. Write a C program a. Concatenate two	to perform following st	tring operation	ıs:
b. Reverse a string			
	occurrences of a word in	ı a string	
4. Write a C program	n to perform following o	operations on	a Single Linked
List data structure			
a. Traversal			
b. Insertion: 1. In	nsertion after a particula	r node	
2. I1	nsertion before a particu	lar node	
c. Deletion			
d. Reversal of a L	iked List by revering the	elinks	

5. Write a C program to add two Polynomial Equations using Linked List

6. Write a C program to perform following operations on a Doubly Linked

b. Insertion

Department of Electronics and Communication Engineering

DATA STRUCTURE LABORATORY

SEMESTER-III (B.TECH- ECE/ECE-AI) SUBJECT CODE: BCS-201

Room No. E-106

LIST OF EXPERIMENTS

(contd.)

- 7. Write a C program to perform following operations on a Circular Linked List
 - a. Traversal

b. Insertion

- c. Deletion
- 8. Write a C program to implement Stack using Array.
- 9. Write a C program to implement Stack using Linked List.
- 10. Write a C program to implement Queue using Array.
- 11. Write a C program to implement Linked List using Queue.
- 12. Write a C program for conversion of infix expression to Postfix expression.
- ** use the stack created in experiment no 11 or 12
- 13. Write a C program for evaluation of Postfix Expression.
- ** use the stack created in experiment no 11 or 12
- 14. To implement Binary tree traversal algorithms Inorder, preorder & postorder

Department of Electronics and Communication Engineering

DATA STRUCTURE LABORATORY

SEMESTER-III (B.TECH- ECE/ECE-AI) SUBJECT CODE: BCS-201

Room No. E-106

LIST OF EXPERIMENTS

(contd.)

- 15. Write a C program to implement Binary Search Tree and perform following operations
 - a. Searching for a particular node
 - b. Insertion of a new Node
 - c. Deletion of a particular node N
 - Case 1: when node N has no children
 - Case 2: Node N has exactly one child
 - Case 3: Node N has two children
- 16. Write a C program to implement Binary Search.
- 17. Write a C program to implement
 - a. Bubble Sort
- b. Quick Sort
- c. Heap Sort

- d. Insertion Sort
- e. Merge Sort
- 18. Implement Graph traversal algorithms BFS & DFS
- 19. Write a C program to create a file, store information and perform following operation
 - a. Delete a specific line from a text file
 - b. Find the number of lines in a text file
 - c. Append the content of file at the end of another file
 - d. Copy file in to another file

Department of Electronics and Communication Engineering

NEURAL NETWORK AND ARTIFICIAL INTELLIGENCE **LABORATORY**

SEMESTER-III (B.TECH- ECE-AI) SUBJECT CODE: BAI-205

Room No. E-106

LIST OF EXPERIMENTS

- 1.To study the basics of Artificial Intelligence and its applications.
- 2. Write a program to implement the Hill climbing techniques.
- 3. Write a program to implement the BFS search method.
- 4. Write a program to solve the Monkey banana problem.
- 5. Write a program to implement inform A* search method.
- 6. Write a program to implement a Tic-Tac-Toe game.
- 7. Write a program to show the back-propagation network for the X-OR function.
- 8. Write a program to find how the Perceptron learning rule works for Linearly Separable problems.
- 9. Write a program to implement an artificial neural network with backpropagation.
- 10. Write a program to implement a decision tree for restaurant waiting problem.

Department of Electronics and Communication Engineering

DATA COMMUNICATION AND COMPUTER NETWORKS LABORATORY

SEMESTER-V (B.TECH- ECE) SUBJECT CODE: BIT-301

Room No. E-106

LIST OF EXPERIMENTS

- 1. Write a C/C++ program to determine if the IP address is in Class A, B, C, D, or E.
- 2. Write a C/C++ program to translate dotted decimal IP address into 32-bit address.
- 3. To establish straight configuration for LAN.
- 4. To implement a routing protocol and check its connectivity in a variable length subnet masked network.
- 5. Write a C/C++ program to validate an IPv4 address.
- 6. Write a C/C++ program to determine Class, network and Host ID of an IPv4 address.
- 7. Write a C/C++ program to implement checksum technique to detect error.
- 8. Write a C/C++ program to implement even and odd parity checker at link layer.
- 9. Write a C/C++ program to translate 32-bit Binary IP address into dotted decimal IP address.

DATA COMMUNICATION AND COMPUTER NETWORKS LABORATORY

SEMESTER-V (B.TECH- ECE)

SUBJECT CODE: BIT-301 Room No. E-106

LIST OF EXPERIMENTS

(contd.)

- 10. Write a C/C++ Program for Congestion control using Leaky Bucket Algorithm
 - a. Introduction to various network simulator.
 - b. Introduction to NS2 and its Installation procedure.

11. Introduction to TCL

- a. WAP to print "Hello World".
- b. WAP to demonstrate reading of user input and output in TCL.
- c. WAP to demonstrate use of conditional operator (if-else-if-else) in TCL.
- d. WAP to input two numbers and perform all mathematical operations.

12. Introduction to NAM

WAP to demonstrate the traffic of duplex link between nodes in TCL by

- a. Running FTP application over TCP and
- b. CBR over UDP.
- 13. Introduction to awk utility i.e., working with trace files
- a. Simulate a three node point-to-point network with duplex links between them. Set the queue size and vary the bandwidth and find the number of packets dropped.
- b. Simulate a 4 node point-to-point network with the links connected as follows: n0-n2, n1-n2 and n2-n3. Apply TCP agent between n0-n3 and UDP between n1-n3. Apply relevant application over TCP and UDP agents changing the parameter and determine number of packets sent by TCP/UDP.

Department of Electronics and Communication Engineering

DATA COMMUNICATION AND COMPUTER NETWORKS LABORATORY

SEMESTER-V (B.TECH- ECE) SUBJECT CODE: BIT-301

Room No. E-106

LIST OF EXPERIMENTS

(contd.)

- 14. Introduction to routing WAP to demonstrate unicast routing.
- 15. Introduction to multicast routing
 - a. WAP to demonstrate "Dense Mode" multicast routing.
 - b. WAP to demonstrate 'Centralized Mode' multicasting routing.
- 16. Simulate the different types of Internet traffic such as FTP and TELNET over a network and analyse the throughput.
- 17. Introduction to Ethernet/LAN

Simulate an Ethernet LAN using n nodes (6-10), change error rate and data rate and compare throughput.

- 18. Simulate an Ethernet LAN using n nodes and set multiple traffic nodes and determine collision across different nodes.
- 19. Simulate an Ethernet LAN using n nodes and set multiple traffic nodes and plot congestion window for different source / destination.

Department of Electronics and Communication Engineering

CLOUD COMPUTING LABORATORY

SEMESTER-VI (B.TECH- ECE) SUBJECT CODE: BIT-304

Room No. E-106

LIST OF EXPERIMENTS

- 1. To understand what is cloud, its importance, usage, services and types of Cloud.
- 2. To familiarize with ThingSpeak and understand the procedure of creation of a Channel over ThingSpeak.
- 3. To understand the procedure of MATLAB analysis of a ThingSpeak Channel.
- 4. Virtualization: To install Virtualization software (VirtualBox) and create a virtual machine with guest OS different from host OS.
- 5. Virtualization: To import and export Virtual Machines between physical machines.
- 6. CloudSim: To install CloudSim and create a datacenter with one host and running one cloudlet.
- 7. CloudSim: To create two datacenters with one host each and run one cloudlet on it.
- 8. To implement Time Shared and Space Shared Algorithms in CloudSim and compare them.
- 9. To assign priority to cloudlets in Cloudsim.
- 10. To deploy an application on Google App Engine.

Department of Electronics and Communication Engineering

COMPUTER VISION AND IMAGE PROCESSING (CVIP) LABORATORY

DO'S AND DON'TS

DO'S **DON'TS** • Enter and leave the lab as per the • Do not leave the lab without time table. prior permission of the Lab In-• Maintain strict discipline and charge or Technical Assistant. silence in the lab. • Do not bring or eat any eatable Proper handling of computer item in the lab. systems must be done. • Do not make noise or shout in the a keen observer while • Be lab. performing experiments in the lab. • Do not disturb the decorum or Keep your bags in the rack and the aesthetic view of the lab. consumable items back to their • Do not tamper with the lab or original position after finishing off system settings. the experiment in the lab. • Do not install or download any • Report any problems with the software on any lab computer. computer to the person in charge. • Do not modify or delete any • Shut down the computer properly. system files on any lab computer. • Make entry in the register while occupying the computer.